翻訳と辞書
Words near each other
・ Baryancistrus
・ Baryancistrus demantoides
・ Baryancistrus xanthellus
・ Baryatino
・ Baryatinsky
・ Baryatinsky District
・ Baryavan
・ Barybela
・ Barycenter
・ Barycentric
・ Barycentric celestial reference system
・ Barycentric coordinate system
・ Barycentric Coordinate Time
・ Barycentric Dynamical Time
・ Barycentric Julian Date
Barycentric subdivision
・ Barycentric-sum problem
・ Barychelidae
・ Barycholos
・ Barycholos pulcher
・ Barycholos ternetzi
・ Barycnemis blediator
・ Barycypraea
・ Barycypraea fultoni
・ Barycypraea teulerei
・ Barycz
・ Barycz (disambiguation)
・ Barycz Nowa
・ Barycz Stara
・ Barycz Valley Landscape Park


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Barycentric subdivision : ウィキペディア英語版
Barycentric subdivision

In geometry, the barycentric subdivision is a standard way of dividing an arbitrary convex polygon into triangles, a convex polyhedron into tetrahedra, or, in general, a convex polytope into simplices with the same dimension, by connecting the barycenters of their faces in a specific way.
The name is also used in topology for a similar operation on cell complexes. The result is topologically equivalent to that of the geometric operation, but the parts have arbitrary shape and size. This is an example of a finite subdivision rule.
Both operations have a number of applications in mathematics and in geometric modeling, especially whenever some function or shape needs to be approximated piecewise, e.g. by a spline.
==Barycentric subdivision of a simplex==

The barycentric subdivision (henceforth ''BCS'') of an n-dimensional simplex S consists of (''n'' + 1)! simplices. Each piece, with vertices v_0,v_1,\dots,v_n, can be associated with a permutation p_0,p_1,\dots,p_n of the vertices of S, in such a way that each vertex v_i is the barycenter of the points p_0,p_1,\dots,p_i.
In particular, the BCS of a single point (a 0-dimensional simplex) consists of that point itself. The BCS of a line segment (1-simplex) S consists of two smaller segments, each connecting one endpoint (0-dimensional face) of S to the midpoint of S itself (1-dimensional face).
The BCS of a triangle S divides it into six triangles; each part has one vertex v_2 at the barycenter of S, another one v_1 at the midpoint of some side, and the last one v_0 at one of the original vertices.
The BCS of a tetrahedron S divides it into 24 tetrahedra; each part has one vertex at the center of S, one on some face, one along some edge, and the last one at some vertex of S.
An important feature of BCS is the fact that the maximal diameter of an n-dimensional simplex shrinks at least by the factor \frac n.〔

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Barycentric subdivision」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.